Input nonlinearities can shape beyond-pairwise correlations and improve information transmission by neural populations.

نویسندگان

  • Joel Zylberberg
  • Eric Shea-Brown
چکیده

While recent recordings from neural populations show beyond-pairwise, or higher-order, correlations (HOC), we have little understanding of how HOC arise from network interactions and of how they impact encoded information. Here, we show that input nonlinearities imply HOC in spin-glass-type statistical models. We then discuss one such model with parametrized pairwise- and higher-order interactions, revealing conditions under which beyond-pairwise interactions increase the mutual information between a given stimulus type and the population responses. For jointly Gaussian stimuli, coding performance is improved by shaping output HOC only when neural firing rates are constrained to be low. For stimuli with skewed probability distributions (like natural image luminances), performance improves for all firing rates. Our work suggests surprising connections between nonlinear integration of neural inputs, stimulus statistics, and normative theories of population coding. Moreover, it suggests that the inclusion of beyond-pairwise interactions could improve the performance of Boltzmann machines for machine learning and signal processing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons.

The collective dynamics of neural populations are often characterized in terms of correlations in the spike activity of different neurons. We have developed an understanding of the circuit mechanisms that lead to correlations among cell pairs, but little is known about what determines the population firing statistics among larger groups of cells. Here, we examine this question for a simple, but...

متن کامل

When do microcircuits produce beyond-pairwise correlations?

Describing the collective activity of neural populations is a daunting task. Recent empirical studies in retina, however, suggest a vast simplification in how multi-neuron spiking occurs: the activity patterns of retinal ganglion cell (RGC) populations under some conditions are nearly completely captured by pairwise interactions among neurons. In other circumstances, higher-order statistics are...

متن کامل

When do correlations increase with firing rates in recurrent networks?

A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase...

متن کامل

Correlations in Populations of Sensory Neurons

I Summary 7 II Introduction 9 Significance of signal and noise correlations from the information-theoretic perspective 11 Changes in the structure of correlations and neural coding 13 Thesis objectives 14 IV Analysis and modelling of variability and covariability of population spike trains across multiple time scales 29 V Nonlinear transfer of signal and noise correlations in cortical networks ...

متن کامل

The role of pairwise and higher-order correlations in feedforward inputs to neural networks How correlations in the divergent connections shape evoked dynamics

When presented with a task or stimulus, the ongoing activity in the brain is perturbed in order to process the new information of the environment. Typical characteristics of this evoked activity are (1) an increase in firing rate of neurons, (2) a decrease in trial-by-trial variability and (3) an increase or decrease in spike count correlations. Considering the importance of variability and cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2015